方程法在行测数量关系中的应用

2019-04-25 16:00:20 来源:贵州大树教育

分享到:

笛卡尔提到一个实际问题解决的大致流程为:实际问题→数学问题→代数问题→方程问题。其中最后一步正是解决问题的核心所在,可见函数与方程的思想堪称代数中的灵魂思想。二者都是通过未知变量间的运算关系来描述问题并通过计算揭示其本质,多用于一些数量关系表述复杂的应用题。

下面,我们就来重点介绍一下方程法。

方程法是一种直接的方法,它是把未知量设为字母(比如x),然后把字母(比如x)作为已知量参与计算,最终得到等式的过程。方程法的思维方式与其他算术解法的思维方式不同,它不需要从已知到已知和从已知到未知等多层次的分析,它只需要找出等量关系,然后根据等量关系按顺序列出方程即可。

方程法的主要流程为:

设未知量→找出等量关系→列出方程→解出方程

一般说来,行程问题、工程问题、盈亏问题、鸡兔同笼问题、和差倍比问题、浓度问题、利润问题等均可使用方程法。但是具体问题还需要具体分析,如果题中数据关系比较简单,或者可以直接利用现有公式时,使用方程法反而会影响答题效率。

例题:

一商品的进价比上月低了5%,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为:

A.12%       B.13%    C.14%      D.15%

【思路点拨】本题为典型的利润问题,但是没有太多详细的数据,即不容易直接找到已知数据间的关系,因此直接用方程法求解比较简洁。

【解析】设未知量:设上个月的利润率为x,则这个月的利润率为x+6%。

找出等量关系:两个月的售价是一样的。

列出方程:不妨设上个月商品进价是1,则这个月商品进价是0.95,

1×(1+x)=0.95×(1+x+6%)

解出方程:x=14%。

所以正确答案为C。



笛卡尔提到一个实际问题解决的大致流程为:实际问题→数学问题→代数问题→方程问题。其中最后一步正是解决问题的核心所在,可见函数与方程的思想堪称代数中的灵魂思想。二者都是通过未知变量间的运算关系来描述问题并通过计算揭示其本质,多用于一些数量关系表述复杂的应用题。

下面,我们就来重点介绍一下方程法。

方程法是一种直接的方法,它是把未知量设为字母(比如x),然后把字母(比如x)作为已知量参与计算,最终得到等式的过程。方程法的思维方式与其他算术解法的思维方式不同,它不需要从已知到已知和从已知到未知等多层次的分析,它只需要找出等量关系,然后根据等量关系按顺序列出方程即可。

方程法的主要流程为:

设未知量→找出等量关系→列出方程→解出方程

一般说来,行程问题、工程问题、盈亏问题、鸡兔同笼问题、和差倍比问题、浓度问题、利润问题等均可使用方程法。但是具体问题还需要具体分析,如果题中数据关系比较简单,或者可以直接利用现有公式时,使用方程法反而会影响答题效率。

例题:

一商品的进价比上月低了5%,但超市仍按上月售价销售,其利润率提高了6个百分点,则超市上月销售该商品的利润率为:

A.12%       B.13%    C.14%      D.15%

【思路点拨】本题为典型的利润问题,但是没有太多详细的数据,即不容易直接找到已知数据间的关系,因此直接用方程法求解比较简洁。

【解析】设未知量:设上个月的利润率为x,则这个月的利润率为x+6%。

找出等量关系:两个月的售价是一样的。

列出方程:不妨设上个月商品进价是1,则这个月商品进价是0.95,

1×(1+x)=0.95×(1+x+6%)

解出方程:x=14%。

所以正确答案为C。



声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。

在线咨询 客服电话