容斥原理

2019-04-25 16:02:43 来源:贵州大树教育

分享到:

 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。

  一、容斥原理

  在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

  1.容斥原理1——两个集合的容斥原理

  如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示:

  公式:A∪B=A+B-A∩B

  

图片1.png

  总数=两个圆内的-重合部分的

  【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?

  数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。

  2.容斥原理2——三个集合的容斥原理

  如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

  如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:

  公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

  

图片2.png

  总数=三个圆内的-重合两次的+重合三次的

  【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?

  参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

  3.用文氏图解题

  文氏图又称韦恩图,能够将逻辑关系可视化的示意图。从文氏图可清晰地看出集合间的逻辑关系、重复计算的次数,最适合描述3个集合的情况。

  【例3】某班有50 位同学参加期末考试,结果英文不及格的有15 人,数学不及格的有19 人,英文和数学都及格的有21 人。那么英文和数学都不及格的有( )人。

  A.4 B.5 C.13 D.17

  解析:如图所示,按英文及格、数学及格画2个圆圈,根据题干条件确定它们重叠。

  

图片3.png



 容斥原理和抽屉原理是国家公务员考试行测科目数学运算部分的“常客”,了解此两种原理不仅可以提高做题效率,还可以提高自己的运算能力,扫平所有此类计算题。

  一、容斥原理

  在计数时,要保证无一重复,无一遗漏。为了使重叠部分不被重复计算,在不考虑重叠的情况下,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

  1.容斥原理1——两个集合的容斥原理

  如果被计数的事物有A、B两类,那么,先把A、B两个集合的元素个数相加,发现既是A类又是B类的部分重复计算了一次,所以要减去。如图所示:

  公式:A∪B=A+B-A∩B

  

图片1.png

  总数=两个圆内的-重合部分的

  【例1】一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?

  数学得满分人数→A,语文得满分人数→B,数学、语文都是满分人数→A∩B,至少有一门得满分人数→A∪B。A∪B=15+12-4=23,共有23人至少有一门得满分。

  2.容斥原理2——三个集合的容斥原理

  如果被计数的事物有A、B、C三类,那么,将A、B、C三个集合的元素个数相加后发现两两重叠的部分重复计算了1次,三个集合公共部分被重复计算了2次。

  如图所示,灰色部分A∩B-A∩B∩C、B∩C-A∩B∩C、C∩A-A∩B∩C都被重复计算了1次,黑色部分A∩B∩C被重复计算了2次,因此总数A∪B∪C=A+B+C-(A∩B-A∩B∩C)-(B∩C-A∩B∩C)-(C∩A-A∩B∩C)-2A∩B∩C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C。即得到:

  公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C

  

图片2.png

  总数=三个圆内的-重合两次的+重合三次的

  【例2】某班有学生45人,每人都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有24人,足球、排球都参加的有12人,足球、游泳都参加的有9人,排球、游泳都参加的有8人,问:三项都参加的有多少人?

  参加足球队→A,参加排球队→B,参加游泳队→C,足球、排球都参加的→A∩B,足球、游泳都参加的→C∩A,排球、游泳都参加的→B∩C,三项都参加的→A∩B∩C。三项都参加的有A∩B∩C=A∪B∪C-A-B-C+A∩B+B∩C+C∩A=45-25-22-24+12+9+8=3人。

  3.用文氏图解题

  文氏图又称韦恩图,能够将逻辑关系可视化的示意图。从文氏图可清晰地看出集合间的逻辑关系、重复计算的次数,最适合描述3个集合的情况。

  【例3】某班有50 位同学参加期末考试,结果英文不及格的有15 人,数学不及格的有19 人,英文和数学都及格的有21 人。那么英文和数学都不及格的有( )人。

  A.4 B.5 C.13 D.17

  解析:如图所示,按英文及格、数学及格画2个圆圈,根据题干条件确定它们重叠。

  

图片3.png



声明:本网站部分内容来源于网络搜集及网友投稿,由本站编辑整理发布,仅用于学习交流使用,非盈利目的,如涉及侵权请联系本站管理员进行删除或修改。

在线咨询 客服电话